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Abstract
The Helmholtz decomposition theorem for an anisotropic medium is explicitly
stated in terms of two symmetric and positive definite dyadics, which carry
the directional characteristics of the medium. It is shown that this general
decomposition is not unique, and that once the scalar invariant with respect to
one of the dyadics and the vector invariant with respect to the other dyadic are
given the initial field can be completely reconstructed.

PACS numbers: 02.30.Fn, 03.50.De, 41.20.Jb, 47.27.Gs

1. Introduction

The basic idea of representing a vector field as the gradient of a scalar plus the rotation of a
vector function appears, for the first time, in a paper by Stokes [25] on diffraction in 1849.
Helmholtz [11] redeveloped this decomposition in an article on the hydrodynamics of vortex
motion in 1858. This result, which is known today as the Helmholtz decomposition theorem,
plays an irreplaceable role in all of mathematical physics. A weak formulation of the Helmholtz
decomposition is demonstrated in [4]. Furthermore, Gregory [9] has shown that the Helmholtz
decomposition is true without any growth condition at infinity and he has also investigated the
case where singularities are present. The Helmholtz theorem has been recently extended to
polyadic (tensors of any valence) fields [6] as well as to anisotropic media [17].

In the present work the questions of uniqueness for the anisotropic decomposition, as well
as that of reconstructing the field from its invariants [28], are addressed. It is proved that, if S̃

and T̃ are the positive definite symmetric dyadics defining the S-gradient and the T -gradient,
respectively, then uniqueness holds up to an additive T -gradient of a scalar ST -harmonic
function. Equivalently, uniqueness holds up to an additive S-rotation of a vector ST -harmonic
function. Furthermore, it is shown that once the S-divergence and the T -rotation of a vector
field are given a solution of the ST -Poisson equation is all we need to reconstruct the initial field.
Such a solution is also provided in terms of a quadrature, just as in the case of the isotropic
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Helmholtz decomposition. Helmholtz decomposition furnishes the starting point for many
differential representations, such as Stokes [12, 14, 25–27], Papkovich [3, 5, 7, 10, 20–22, 24],
Neuber [10, 18], Boussinesq [10], Galerkin [8], Love [10], Palaniappan [19] and so on.
Therefore, it would be of great interest to investigate what form all these representations
take for fully or partially anisotropic media. The books by Serdyukov et al [23] and Lindell
et al [15] provide excellent starting points for such an investigation.

Section 2 states the basic decomposition theorem for isotropic media while its anisotropic
generalization is exposed in section 3. Section 4 deals with the question of uniqueness and
section 5 discusses the problem of reconstructing the field from its invariants.

2. Isotropic Helmholtz theorem

The classical (isotropic) Helmholtz theorem states that, if � is a bounded, regular in the sense
of Kellogg [13], domain in R

3 and if f is a vector field which is continuous on �̄ = � ∪ ∂�

and has continuous first derivatives in �, then there are functions � and A defined on �, also
with continuous first-order derivatives, such that

f(r) = ∇�(r) + ∇ × A(r) (1)

and

∇ · A(r) = 0 (2)

where all functions f , � and A are defined on �̄.
The ∇� part of decomposition (1) is irrotational and the ∇ × A part is solenoidal. For

exterior domains (unbounded domains with bounded boundary) with the same regularity,
theorem (1), (2) is also true without any assumptions on the asymptotic decay of f at infinity,
as was initially shown by Blumenthal [2] and generalized to domains that involve isolated
singular points by Gregory [9].

The proof of the Helmholtz theorem is based on two remarks. First, the solution of the
Poisson equation

�u(r) = f(r) (3)

in � is given by

u(r) = − 1

4π

∫
�

f(r′)
|r − r′| dυ (r′) (4)

and second, any function which has continuous second-order derivatives satisfies the identity

�u(r) = ∇ ⊗ ∇ · u(r) − ∇ × (∇ × u(r)). (5)

Note that the function u, given by (4), has continuous second-order derivatives because f has
continuous first-order derivatives [10]. Combining (3), (4) and (5) we arrive at the conclusion
that

�(r) = ∇ · u(r) (6)

and

A(r) = −∇ × u(r). (7)

Integration by parts can then be used to write

�(r) = 1

4π

∫
�

∇r′ · f(r′)
|r − r′| dυ (r′) (8)
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and

A(r) = − 1

4π

∫
�

∇r′ × f(r′)
|r − r′| dυ (r′), (9)

which shows that the vector field f can be reconstructed from the scalar and vector invariants
of its gradient, via (1), (8) and (9).

Furthermore, the decomposition (1) is unique up to the additive gradient of a harmonic
function. That is, we can always write (1) as

f(r) = [∇�(r) + ∇υ(r)] + [∇ × A(r) − ∇υ(r)] (10)

where

�υ(r) = 0 (11)

in �. Obviously ∇υ can contribute to the ∇� part since it is irrotational by structure and it
can contribute to the ∇ × A part since, by (11), is solenoidal.

3. Anisotropic Helmholtz theorem

Let S̃ be a symmetric and positive definite dyadic in R
3 and define the S-gradient ∇S by

∇S = S̃ · ∇. (12)

In fact, if s1, s2, s3 are the three positive eigenvalues of S̃ corresponding to the three orthogonal
unit eigendirections ŝ1, ŝ2, ŝ3, then it is easily seen that

∇S =




s1
∂

∂s1

s2
∂

∂s2

s3
∂

∂s3


 . (13)

Therefore, the three equivalent directions of differentiation, represented by the operator ∇, are
replaced through S̃ by three unequal directions of differentiation, represented by the operator
∇S . As a result of this transformation the gradient is scaled and rotated by the standards imposed
by S̃. In other words, the directional characteristics of the anisotropic medium, described by
S̃, are incorporated within the operator ∇S , which is now medium dependent. Obviously, a
different symmetry is described by a different positive definite dyadic T̃ , which provides the
T -gradient

∇T =




τ1
∂

∂τ1

τ2
∂

∂τ2

τ3
∂

∂τ3


 (14)

caring the characteristics of T̃ . In a straightforward manner we define the S-divergence and
the S-rotation of a vector field f by

∇S · f = (S̃ · ∇) · f (15)

and

∇S × f = (S̃ · ∇) × f (16)

respectively. Similarly, the ST -Laplacian is defined as

∇S · ∇T = (S̃ · ∇) · (T̃ · ∇) = ∇ · S̃ · T̃ · ∇ = (S̃ · T̃ ) : ∇ ⊗ ∇

=
( 3∑

i=1

si ŝi

∂

∂si

)
·
( 3∑

j=1

τj τ̂j

∂

∂τj

)
, (17)
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where ŝi , i = 1, 2, 3, is the characteristic system associated with the dyadic S̃, and
τ̂ i , i = 1, 2, 3, is the characteristic system associated with the dyadic T̃ .

The case S̃ = T̃ implies that

∇S · ∇S = s2
1

∂2

∂s2
1

+ s2
2

∂2

∂s2
2

+ s2
3

∂2

∂s2
3

, (18)

which reduces further to a multiple of the (isotropic) Laplacian whenever s1 = s2 = s3.
The basic identity that replaces (5) reads as follows

(∇S · ∇T )h(r) = ∇T (∇S · h(r)) − ∇S × (∇T × h(r)), (19)

where h is any vector field with continuous second derivatives. Suppose now that f is a
continuous differentiable vector field and h is a solution of the ST -Poisson equation

∇S · ∇T h(r) = f(r). (20)

Then the anisotropic version of the Helmholtz decomposition theorem assumes the form

f(r) = ∇T �(r) + ∇S × A(r) (21)

where the T -gradient of � is a T -irrotational field and the S-rotation of A is an S-solenoidal
field. The scalar potential � and the vector potential A are given by

�(r) = ∇S · h(r) (22)

and

A(r) = −∇T × h(r) (23)

respectively, with h a solution of (20). Note that the T -irrotational part of f is given by an
S-divergence and the S-solenoidal part of f is given by a T -rotation.

Applying the decomposition (21) to the vector potential A we obtain

A(r) = ∇S�
′(r) + ∇T × A′(r). (24)

However, A enters the initial decomposition (21) of f via its S-rotation, which is

∇S × A(r) = ∇S × ∇S�
′(r) + ∇S × (∇T × A′(r)) = ∇S × (∇T × A′(r)). (25)

Formula (25) shows that the choice of the scalar potential �′ does not affect the
decomposition (21) and therefore could be omitted, but ignoring the term ∇S�

′ in (24) is
equivalent to assuming that A is T -solenoidal. Consequently the gauge condition assumes the
form

∇T · A(r) = (T̃ · ∇) · A = 0. (26)

In other words, the S-solenoidal part of A is expressed in terms of a T -solenoidal vector
potential.

4. Uniqueness

Let us assume that there are two pairs of potentials (�, A) and (�′, A′) that decompose the
same vector field f . Then

f = ∇T � + ∇S × A, ∇T · A = 0 (27)

and

f = ∇T �′ + ∇S × A′, ∇T · A′ = 0, (28)
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which imply that

∇T (� − �′) + ∇S × (A − A′) = 0. (29)

Taking first the T -divergence and then the S-rotation of (29) we arrive at

(∇S · ∇T )(� − �′) = 0 (30)

and

∇T × [∇S × (A − A′)] = 0. (31)

In view of the basic identity (19), expression (31) implies that

∇S[∇T · (A − A′)] = (∇T · ∇S)(A − A′), (32)

which, by (27) and (28), reduces to

(∇T · ∇S)(A − A′) = 0. (33)

From (30), (33) and the symmetry of S̃ and T̃ we conclude that the difference � − �′ of
the scalar potentials and the difference A − A′ of the T -solenoidal vector potential are both
ST -harmonic.

In other words,

� = �′ + u (34)

and

A = A′ + V , ∇T · V = 0, (35)

where

(∇S · ∇T )u = 0 (36)

and

(∇S · ∇T )V = 0, (37)

while (27) and (28) provide

f = ∇T � + ∇S × A = ∇T �′ + ∇T u + ∇S × A′ + ∇S × V . (38)

We also obtain from (35) and (37) that

∇T × (∇S × V ) = ∇S(∇T · V ) − (∇T · ∇S)V = 0, (39)

which confirms that the S-rotation of V , ∇S × V , is T -irrotational.
Consequently, there exists a scalar field w such that

∇S × V = ∇T w (40)

and satisfaction of (38) demands that

∇T (u + w) = 0 (41)

or

w = −u + c, (42)

where the constant c could be assumed to be zero because only the gradient of w is needed.
We conclude that the decomposition (27) is unique up to an additive term which is the

T -gradient of an ST -harmonic scalar function.
In other words,

f = (∇T � + ∇T u) + (∇S × A − ∇T u), (43)
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where the vector field ∇T u is T -irrotational by structure, and it is S-solenoidal since u is
ST -harmonic.

Obviously, (40) could be used the other way around and express (43) as

f = (∇T � − ∇S × V ) + (∇S × A + ∇S × V ). (44)

Then, the uniqueness of the decomposition is secured up to an additive term which is the
S-rotation of an ST -harmonic vector function. The S-rotation of V is T -irrotational because
of (39) and it is S-solenoidal by structure.

For the degenerate case, where S̃ = T̃ = Ĩ, the isotropic case (10) is recovered.

5. Decomposition and reconstruction

In this section we address the questions of how to obtain a pair of potentials � and A in terms
of the original vector field f and how to reconstruct the field f from its S-divergence and
T -rotation. To this end we take the S-divergence and the T -rotation of the representation

f(r) = ∇T �(r) + ∇S × A(r) (45)

to arrive at

∇S · f(r) = ∇S · ∇T �(r) (46)

∇T × f(r) = ∇T × (∇S × A(r)) = ∇S(∇T · A(r)) − (∇T · ∇S)A(r) = −(∇T · ∇S)A(r),

(47)

where the basic identity (19) and the gauge condition (26) have been used.
Consequently, if the scalar invariant of ∇Sf and the vector invariant of ∇T f are given,

then the potentials � and A are obtained as solutions of the ST -Poisson equations

(S̃ · T̃ ) : ∇ ⊗ ∇�(r) = ∇S · f(r) (48)

and

(S̃ · T̃ ) : ∇ ⊗ ∇A(r) = −∇T × f(r). (49)

The solutions of (48) and (49) are provided in the form

�(r) =
∫

�

G(r, r′)∇′
S · f(r′) dυ (r′) (50)

and

A(r) = −
∫

�

G(r, r′)∇′
T × f(r′) dυ (r′), (51)

where the fundamental solution G satisfies the equation

(S̃ · T̃ ) : ∇ ⊗ ∇G(r, r′) = −δ(r − r′) (52)

and the primed gradient indicates differentiation with respect to the variable r′.
In order to solve equation (52) we first observe that, even though the product of the two

symmetric dyadics S̃ and T̃ is not symmetric, the double contraction of S̃ · T̃ and of T̃ · S̃

with ∇ ⊗ ∇ leads to the same expression. Therefore,

(S̃ · T̃ ) : ∇ ⊗ ∇ = 1
2 (S̃ · T̃ + T̃ · S̃) : ∇ ⊗ ∇. (53)

If we denote by Ũ the symmetric part of S̃ · T̃ ,

Ũ = 1
2 (S̃ · T̃ + T̃ · S̃), (54)
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then it is enough to solve the equation

Ũ : ∇ ⊗ ∇G(r) = −δ(r), (55)

where Ũ is symmetric but not necessarily positive definite. Nevertheless the positive
definiteness of Ũ is preserved whenever S̃ and T̃ commute, in which case they share a common
set of eigenvectors. Then, there exists a positive definite symmetric dyadic Ṽ such that

U = Ṽ · Ṽ (56)

and the transformation

rV = Ṽ −1 · r, (57)

which provides the connection

∇V = Ṽ · ∇, (58)

transforms equation (55) to

∇2
V G(rV ) = −δ(rV ). (59)

The solution of (59) is given by [16]

G(rV ) = 1

4π(det Ṽ )|rV | = 1

4π(det Ṽ )
√

(V −1 · r) · (V −1 · r)

= 1

4π(det Ṽ )
√

Ũ−1 : r ⊗ r
,

(60)

which implies that the solution of (52) is given by

G(r, r′) = 1

4π(det Ṽ )

√
Ũ−1 : (r − r′) ⊗ (r − r′)

. (61)

The fundamental solution G is also written as

G(r, r′) = 1

4π

√
Ũ (2) : (r − r′) ⊗ (r − r′)

, (62)

where the symmetric dyadic Ũ (2) represents the dyadic invariant of Ũ . We recall here that if

Ã = a1 ⊗ b1 + a2 ⊗ b2 + a3 ⊗ b3 (63)

the dyadic invariant [1, 14] of Ã is given by

Ã(2) = (a1 × a2) ⊗ (b1 × b2) + (a2 × a3) ⊗ (b2 × b3) + (a3 × a1) ⊗ (b3 × b1). (64)

Substituting (61), or (62) into the integrals (50) and (51) we obtain the potentials � and A in
terms of the S-divergence and T -rotation of the vector field f , respectively.

Finally, once � and A are known the original field f is obtained through (45).
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